R’s weirdnesses

are fun & useful

R is a really weird language
There are people who think of it as a statistical package - a free version of stata perhaps.

Like stata, R includes lots of useful things

Statistics programs
generally include
distributions

R includes...

Statistics programs
generally include
statistical tests

Statistics programs
generally include
plotting

Statistics programs
don't often include
blog generators

rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr

http://cran.r-project.org/package=blogdown

Statistics programs
don't often include
webservers

cran.r-project.org/package=httpuv

http://cran.r-project.org/package=httpuv

Statistics programs
don't often include

github.com/ropenscilabs/miner

http://github.com/ropenscilabs/miner

Statistics programs
don't often include
metaprogramming

ﬁlll:: ggIENTISTS

PREOCCUPIED &
WITH WHETHER OR '
NOT THEY COULD C

'THEY DIDN'T STOP TO THINK IF THEY SHOULD

At first metaprogramming seems like a really bizarre thing to do in any language
And it's very unexpected in a statistical package

metaprogramming makes much more sense when you know R's history

R has a strange history. It turns up as derivative of S - and S is ancient, coming out of Bell Labs in 1976.

This is older than C++, Python, Ruby and much older than Julia

R was developed as a new implementation of S in 1993 by Ross lhaka and Robert Gentleman. They were heavily influenced by Scheme - a language popular in
computing science for decades, and which has lots of interesting ideas despite being very small. The one that really turns up is that data and code are the same sort of

thing (homiconicity)

Generally R looks a lot like C or Fortran (procedural, do this, then that) but sometimes the weird scheme bits shine through

R’s weirdnesses

are fun & useful

Today | want to talk about how metaprogramming is fun and useful

Using R since 1999, second language (after Python) but my workhorse

| no longer do any data analysis

| build infrastructure and this talk discusses some of it

B "_/) ‘(\/ = \G(gl *\
. \ %
. ‘ B2 N\
(N 2 _.

For the last 2.5 years | have worked as a research software engineer in the Department of Infectious Disease Epidemiology at Imperial College London

Epidemiological modelling has a long history, but now we use lots of R!

Encryption

Differential equations

Docker

Obijectives for this talk

1. R has some strange features that make it surprisingly powerful. These should be used with care
2. Three packages that do interesting things

3. Three fields that you may not have encountered with R

Don't try to learn everything - It's going to be very light touch and not very deep
If one section seems uninteresting to you, just wait 10 minutes and the next one will be totally different
Take home one new package, idea, or way of thinking about R

Encryption

Encrypt and save csv

write.csv(mydata, "secret.csv")

We want to encrypt a csv file.

But the encryption tools won't work with this function.

So we first must write it out in plain text

Encrypt and save csv

tmp <- tempfile()
write.csv(mydata, tmp)

Encrypt and save csv

tmp <- tempfile()
write.csv(mydata, tmp)
bytes <- readBin(tmp, ...)

enc <- sodium::data_encrypt(bytes, key)

Then read it back up and encrypt that data

Encrypt and save csv

tmp <- tempfile()
write.csv(mydata, tmp)
bytes <- readBin(tmp, ...)

enc <- sodium::data_encrypt(bytes, key)
enc

[1] a7 8e 31 99 3b 7b ac 58 4e 35 37 79
[13] 53 10 4c fe 5e 78 de 4e 4d 25 77 26

This involves working with raw vectors which you don't generally see unless you go out of your way

Encrypt and save csv

tmp <- tempfile()
write.csv(mydata, tmp)
bytes <- readBin(tmp, ...)

enc <- sodium::data_encrypt(bytes, key)
writeBin(enc, "secret.csv")
file.remove (tmp)

Decrypt and read csv

enc <- readBin("secret.csv", ...)
bytes <- sodium::data_decrypt(enc, key)
tmp <- tempfile()

writeBin(bytes, tmp)
mydata <- read.csv(tmp)
file.remove(tmp)

A simpler interface

cyphr::encrypt(write.csv(mydata, "secret.csv"),

mydata <- cyphr::decrypt(read.csv("secret.csv"),)

A simpler interface

cyphr::encrypt(write.csv(mydata, "secret.csv"),

Write mydata to temp file using write.csv

Encrypt temp file contents to "secret.csv" using
Delete temp file

A simpler interface

cyphr::encrypt(write.csv(mydata, "secret.csv"),

Decide on a temporary file tmp

Detect filename is second argument "secret.csv"
Rewrite expression as write.csv(mydata, tmp)
Evaluate new expression (in same environment as old)
Read in tmp as bytes

Encrypt the contents with cyphr::encrypt(bytes,)
Save encrypted data as secret.csv

Delete the temporary file tmp

#
#
#
#
#
#
#
#

Expressions are data

as.list(quote(saveRDS(mydata, "secret.rds")))

[[1]]
saveRDS

[[2]]

mydata

[[3]]

[1] "secret.xrds"

This works because in R, expressions are simply datal

You can walk through the tree and work with parts of the expression at will

This sort of processing is used in all sorts of places:

- automatic plot axes
- library
- data.frames that build out of the names

A simpler interface

cyphr::encrypt(write.csv(mydata, "secret.csv"),
Write mydata to temp file using write.csv

Encrypt temp file to "secret.csv" using

Delete temp file

mydata <- cyphr::decrypt(read.csv("secret.csv"),
Decrypt "secret.csv" into temp file using

Read mydata from temp file using read.csv

Delete temp file

A simpler interface

cyphr::encrypt(saveRDS(mydata, "secret.rds"),
Write mydata to temp file using saveRDS

Encrypt temp file to "secret.rxrds" using

Delete temp file

mydata <- cyphr::decrypt(readRDS("secret.xds"),
Decrypt "secret.rds" into temp file using

Read mydata from temp file using readRDS

Delete temp file

We can change the target function to read and write different types of files and everything just works

Encrypting an analysis

mydata <- read.csv("secret.csv")

newdata <- my_analysis_function(mydata)

saveRDS (newdata, "export.rds")

The idea is that it can then just be taken to an existing analysis and wrapped around the code that already exists

Rather than having to replace every input/output line with 5 lines of repetitive and error-prone code, or using special encryption/decryption functions we can change an
analysis very simply

Encrypting an analysis

mydata <- cyphr::decrypt(read.csv("secret.csv"), key)

newdata <- my_analysis_function(mydata)

cyphr::encrypt(saveRDS(newdata, "export.rds"), key)

This does not work with plotting (yet)

Alternative approaches would be to use encrypted volumes but these are less portable and awkward to share

A little goes a long way - talk about how this breaks referential transparency and so needs to be used with care
Talk about where this is used elsewhere in the R ecosystem - library, dplyr, subset, etc

Talk about how programming with these functions can be hard and how a whole new package (rlang) exists to try and simplify programming with NSE. Not best used
everywhere, but when used lightly can be very expressive

Differential
equations

Something completely different!

SRR

dS dl dR

dt dt dt

Susceptible, infected, resistant
Described in terms of rates of change of the variables with respect to time

Common type of modelling, and usually intractable analytically

Variable

Time

But suppose we did know the position of the variable at some point in time

Variable

Time

And we can compute its slope with respect to time

Variable

Time

We can extrapolate down and correct as we go and work out the rest of the curve

Repeating over and over again

Variable

Time

In R there are generally two choices for doing differential equation modelling - easy (expressive) but slow or fast (but harder to write and maintain)

eas lorenz <- function(t, y, parms)
{
sigma <- parms[1]

R <- parms[2]

b <- parms[3]

yl <- y[1]

y2 <- y[2]

y3 <- y[3]

list(c(sigma * (y2 - y1),
R " yl -y2 -yl " y3,
-b " y3 + y1 " y2))

In the easy form you just write the rhs as an R function - you can take time and whatever parameters you want, the current state of the variables and do anything you
want.

You can use any R function no matter how weird

All you need to do is return the derivatives with respect to time in the same order as the variables

easy

lorenz <- function(t, y, parms)
{
sigma <- parms[1]
R <- parms[2]
b <- parms[3]
yl <- y[1]
y2 <- y[2]
y3 <- y[3]
list(c(sigma * (y2 - y1),
R ™yl -y2 -yl " y3,
-b " y3 + y1 " y2))

deSolve::ode(t, y, lorenz)

Then just pass this in to deSolve where there are a lot of great solvers to use

void initmod(void (* odeparms) (int *, double *)) {
int N = 3;
odeparms (&N, parms);
}
void lorenz(int *n, double *t, double "y, double *dydt, double *yout, int *ip)
{
double sigma = parms[0];
double R = parms[1];
double b = parms[2];
double y1 = y[@];
double y2 = y[1];
double y3 = y[2];
dydt[0] = sigma * (y2 - y1);
dydt[1] = R " y1 - y2 - y1 * y3;
dydt[2] = -b " y3 + y1 * y2;
}

The fast version is a bit more work
Rather than write in R we write in C
We can't use names anywhere and need to remember where everything is in our vector
Uses C's semantics of not returning a vector but writing in place

*y, double

*dydt, double *yout, int

fast

void (void (" odeparms) (int *, double *)) {
int N = 3;
odeparms (&N, parms);
}
void lorenz(int *n, double *t, double
{
double sigma = parms[0];
double R = parms[1];
double b = parms[2];
double y1 = y[@];
double y2 = y[1];
double y3 = y[2];
dydt[0] = sigma * (y2 - y1);
dydt[1] = R " y1 - y2 - y1 * y3;
dydt[2] = -b " y3 + y1 * y2;
}
deSolve::ode(t, y, "lorenz", initfunc

, dllname =

"lorenz")

*ip)

- We need to compile this, then load it into R
- Once in R we can run it basically as before

}

{
double

double
double
double
double
double
dydt[0]
dydt[1]
dydt[2]

s
R
b
y
y
y

nnnwmNe=

void lorenz(int *n, double *t,

igma = parms[0];

void initmod(void (* odeparms) (int *, double *)) {
int N = 3;
odeparms (&N, parms);

double *y, double *dydt, double *yout, int

parms|[1]; lorenz <- function(t, y, parms)
parms[2]; {

= y[o]; sigma <- parms|[1]

= y[1]; R <- parms[2]

= y[2]; b <- parms[3]

sigma * (y2 - yl); yl <- y[1]

R* yl - y2 -yl * y3; y2 <- y[2]

-b * y3 + y1 * y2; y3 <- y[3]

list(c(sigma * (y2 - y1),
R ™ yl -y2 -yl * y3,
-b " y3 + y1 * y2))

*ip)

These approaches really aren't that different

Unpack our parameters

void initmod(void (* odeparms) (int *, double *)) {
int N = 3;
odeparms (&N, parms);

}

void lorenz(int *n, double *t,

{
double

double
double
double
double
double
dydt[0]
dydt[1]
dydt[2]

s
R
b
y
y
y

nnnwmNe=

igma = parms[0];

parms|[1];
parms[2];

= y[0];

= y[1];

= y[2];

sigma * (y2 - y1);

R " yl - y2 - yl * y3;

-b * y3 + yl1 * y2;

double *y, double *dydt, double *yout, int

lorenz <- function(t, y, parms)
{
sigma <- parms[1]
R <- parms[2]
b <- parms[3]
yl <- y[1]
y2 <- y[2]
y3 <- y[3]
list(c(sigma * (y2 - y1),
R "yl -y2 -yl " ys3,
-b * y3 + y1 * y2))

*ip)

Unpack our variables

void initmod(void (* odeparms) (int *, double *)) {
int N = 3;
odeparms (&N, parms);

}

void lorenz(int *n, double *t,

{
double

double
double
double
double
double
dydt[0]
dydt[1]
dydt[2]

S
R
b
y
y
y

nnnmwmNe=

igma = parms[0];

double *y, double *dydt, double *yout, int

parms[1]; lorenz <- function(t, y, parms)
parms[2]; {

= y[o]; sigma <- parms|[1]

= y[1]; R <- parms[2]

= y[2]; b <- parms[3]

sigma * (y2 - y1); yl <- y[1]

R* yl - y2 -yl * y3; y2 <- y[2]

-b * y3 + y1 * y2; y3 <- y[3]

list(c(sigma * (y2 - y1),
R ™ yl -y2 -yl * y3,
-b " y3 + y1 " y2))

*ip)

Compute our derivatives

void initmod(void (* odeparms) (int *, double *)) {
int N = 3;
odeparms (&N, parms);

}

void lorenz(int *n, double *t,

{
double

double
double
double
double
double
dydt[0]
dydt[1]
dydt[2]

s
R
b
y
y
y

nmnmnmwmNe=

igma = parms[0];

parms[1];
parms[2];

= y[0];

= y[1];

= y[2];

sigma * (y2 - y1);

R " yl - y2 - yl * y3;

-b " y3 + y1l * y2;

double *y, double *dydt, double *yout, int

lorenz <- function(t, y, parms)
{
sigma <- parms[1]
R <- parms[2]
b <- parms[3]
yl <- y[1]
y2 <- y[2]
y3 <- y[3]
list(c(sigma * (y2 - y1),
R ™ yl -y2 -yl " y3,
-b " y3 + y1 " y2))

*ip)

void initmod(void (* odeparms) (int *, double *)) {
int N = 3;
odeparms (&N, parms);
}
void lorenz(int *n, double *t, double "y, double *dydt, double *yout, int *ip)
{
double sigma = parms[0];
double R = parms[1]; lorenz <- function(t, y, parms)
double b = parms[2]; {
double yl1 = y[0]; sigma <- parms[1]
double y2 = y[1]; R <- parms[2]
double y3 = y[2]; b <- parms[3]
dydt[0] = sigma * (y2 - y1); yl <- y[1]
dydt[1] = R " y1 - y2 - y1 * y3; y2 <- y[2]
dydt[2] = -b * y3 + y1 * y2; y3 <- y[3]
} list(c(sigma * (y2 - y1),
R ™ yl -y2 -yl * y3,
-b * y3 + y1 " y2))
}

What is this? It's a spell that we write

(it's actually a function that tales a function pointer as an argument, then calls that function on the address of stack allocated integer, along with the vector of parameters
that deSolve will pass in)

void initmod(void (* odeparms) (int *, double *)) {
int N = 3;
odeparms (&N, parms);
}
void lorenz(int *n, double *t, double *y, double *dydt, double *yout, int *1ip)
{
double sigma = parms[0];
double R = parms[1];
double b = parms[2];
double y1 = y[@];
double y2 = y[1];
double y3 = y[2];
dydt[0] = sigma * (y2 - y1);
dydt[1] = R " y1 - y2 - y1 * y3;
dydt[2] = -b " y3 + y1 * y2;
}

(it's actually a function that tales a function pointer as an argument, then calls that function on the address of stack allocated integer, along with the vector of parameters
that deSolve will pass in)

Obviously real world cases are going to be more complicated than this but it would be nice to be able to remove the tradeoff here

loxrenz <- odin::odin({
Derivatives
deriv(yl) <- sigma * (y2 - yi)
deriv(y2) <- R " y1 - y2 - y1 * y3
deriv(y3) <- -b * y3 + y1 * y2

Initial conditions
initial(yl) <- 10.0
initial(y2) <- 1.0
initial(y3) <- 1.0

parameters

sigma <- user()
R <- user()
b <- user()

})

Odin is a "domain specific language"

Same idea as the encryption package but more extreme - now we take a set of R code and never run it - we just use it define a problem. We can pull it apart and do
things to it - in this case generate C code, compile that, load it into R and wrap that up as an R object

loxrenz <- odin::odin({

sigma <- usex()
R <- usex()
b <- user()

})

model <- lorenz(sigma = 10.0,

R = 28.0,

b =28/ 3)
t <- seq(0, 50, length.out = 10000)
y <- model$run(t)

name the args in the call

Rewriting expressions

deriv(yl) <- sigma * (y2 - yl)

list(" <-7,
deriv(yl),
sigma * (y2 - y1))

dydt[0] = sigma * (y2 - yl1);

Rewriting expressions

deriv(y1[]) <- sigma * (y2[i] - y1[i])

1ist(‘<-‘,
deriv(yl[]),
sigma * (y2[i] - y1[il]))

for (size_t 1 = 0; 1 < len_yl; ++1i) {
dydt[i] = sigma " (y2[i] - y1[i]);
}

this approach scales up through application of simple rules to support things like automatically working over arrays

loxrenz <- odin::odin({
Derivatives
deriv(yl) <- sigma * (y2 - yi)
deriv(y2) <- R " y1 - y2 - y1 * y3
deriv(y3) <- -b * y3 + y1 * y2

Initial conditions
initial(yl) <- 10.0
initial(y2) <- 1.0
initial(y3) <- 1.0

parameters

sigma <- user()
R <- user()
b <- user()

})

Odin is a "domain specific language"

Same idea as the encryption package but more extreme - now we take a set of R code and never run it - we just use it define a problem. We can pull it apart and do
things to it - in this case generate C code, compile that, load it into R and wrap that up as an R object

transition missing here - return to the SIR model then display this

s d
dt dt dt

Susceptible, infected, resistant

sir <- odin::odin({
deriv(S) <- -beta * S * I [/ N
deriv(I) <- beta * S * I /[N - gamma * I
deriv(R) <- gamma * I

<- 1000
<- 1

don't forget to fix this slide - the right side needs to go away

Variable

Time

Application in an epi context:

- ODE systems with ~10k compartments

- Periodic interventions

- Delays where whole parts of the graph are replayed

Package is agnostic about how inference with these models would be done - there's lots of different reasons to solve an ODE system and it's out of scope here.
Scope of the package

- Simple delay differential equations (limited by R's DDE solvers)

- Arrays for structured compartment models
- Same interface for discrete time models, which may be stochastic

Docker is a software technology providing operating-
system-level virtualization also known as containers,
promoted by the company Docker, Inc. Docker provides an
additional layer of abstraction and automation of
operating-system-level virtualization on Windows and

Linux. Docker uses the resource isolation features of the
Linux kernel such as cgroups and kernel namespaces, and
a union-capable file system such as OverlayFS and others
to allow independent "containers” to run within a single
Linux instance, avoiding the overhead of starting and
maintaining virtual machines.

It's really hard to explain what docker is and not be really boring and/or incorrect

3 '.
0 ! | 4
. L AN e

why use docker?

More interesting is to ask why one would want to use docker

System dependencies "works On my
machine”

Scripts / data

Docker
Image

break into 2?

persistent
storage

database

break into 2 as well

persistent
storage

database

The metaphor is containers because that's like the shipping revolution - pre containers loading and unloading at the docs was labour intensive

-/ &,

"CHINA SHIPPING LINE

but after containers turn up it's much easier to ignore what is inside and just build tools around a standard size

[containexrs/create:

post:
summary: "Create a containex"

consumes:
- "application/json"
parameters:
- name: "name"
in: "query"
description: "Assign the specified name to the container.”
type: "string"
responses:
201:
description: "Container created successfully"
schema:
type: "object”
description: "OK response to ContainerCreate operation"
properties:
Id:
description: "The ID of the created container”
type: "string"

OK so docker is awesome, let's use it from R!

[containexrs/create:

post:
summary: "Create a containex"

consumes:
- "application/json"
parameters:
- name: "name"
in: "query"
description: "Assign the specified name to the container.”
type: "string"
responses:
201:
description: "Container created successfully"
schema:
type: "object”
description: "OK response to ContainerCreate operation"
properties:
Id:
description: "The ID of the created container”
type: "string"

[containexrs/create:

P03t e s comtatner pa rameters

consumes:
- "application/json"
parameters:
- name: "name"
in: "query”
description: "Assign the specified name to the container.”
type: "string"
responses:
201:
description: "Container created successfully"
schema:
type: "object”
description: "OK response to ContainerCreate operation”
properties:
Id:
description: "The ID of the created container”
type: "string"

[containexrs/create:

e @TUIEN i n

consumes:
- "application/json"
parameters:
- name: "name"
in: "query"
description: "Assign the specified name to the container.”
type: "string"
responses:
201:
description: "Container created successfully"
schema:
type: "object”
description: "OK response to ContainerCreate operation"
properties:
Id:
description: "The ID of the created container”
type: "string"

90 methods
10,000 lines
12 versions

if tmpfs:

if version_lt(version, '1.22'): .
raise host_config_version_errox('tmpfs', '1.22')
self["Tmpfs"] = convert_tmpfs_mounts(tmpfs)
if userns_mode:

if version_lt(version, '1.23'):
raise host_config_version_erroxr('userns_mode', '1.23')
self['UsexrnsMode'] = userns_mode

if pids_limit:
if version_lt(version, '1.23"):
raise host_config_version_error('pids_limit', '1.23')
self["PidsLimit"] = pids_limit
if isolation:
if version_lt(version, '1.24"):
raise host_config_version_errox('isolation’, '1.24'")
self['Isolation'] = isolation
if auto_remove:

if version_lt(version, '1.25'):
raise host_config_version_errox('auto_remove', '1.25')
self['AutoRemove’'] = auto_remove

The python folks have a really wonderful docker client - from a user perspective it's a joy to use but the code behind it hits this version issue head on

But we have this crazy dynamic language, so let's do it a different way.

How to write a function

add <- function(a, b) {

a+b
}

How to build a function

add <- function() {

}

args <- alist(a =, b =)
body <- quote(a + b)
add <- as.function(c(args, body))

How to draw
an Owl.

“A e and creceve guide far bogimeen

Fig 1 Dees two orches Fig 2 Deaw the rovt of e durm Ol

stevedore

docker <- stevedore::docker_client()

(this gif will play on the README at https://github.com/richfitz/stevedore)

Stevedore

docker <- stevedore::docker_client(

api_version = "1.35")

Testing packages

Install database
Configure & set up passwords
Use database in package tests

Make sure you clean up properly!

OK, so why:

* you can set up an empty container for testing your package just like travis (but locally)
* but you can extend that all the way out to cover things like getting database included

echo mysql-server mysql-server/root_password password $MYSQL_PASSWORD | \
debconf-set-selections

echo mysql-server mysql-server/root_password_again password $MYSQL_PASSWORD | \
debconf-set-selections

apt-get install -y mysql-server

systemctl stop mysql
mv /var/lib/mysql /mnt/data/mysql
In -s /mnt/data/mysql /var/lib/mysql

echo "alias /var/lib/mysql/ -> /mnt/data/mysql," >> \
[etc/apparmor.d/tunables/alias

sudo systemctl restart apparmor

systemctl start mysql

mysql -u root -p$MYSQL_PASSWORD -e 'show databases;'| grep teamcity > /dev/null
if ["$?" = "1"]; then
cat > /tmp/database-setup.sql <<EOF
CREATE DATABASE $TEAMCITY_DB_NAME DEFAULT CHARACTER SET utf8 COLLATE utf8_bin;
CREATE USER '$TEAMCITY_DB_USER'@'%' IDENTIFIED BY '$TEAMCITY_DB_PASS';
GRANT ALL ON $TEAMCITY_DB_NAME.* TO '$TEAMCITY_DB_USER'@'%';
EOF
mysql -u root -p$MYSQL_PASSWORD < /tmp/database-setup.sql
rm [tmp/database-setup.sql
fi

This is the database part of our setup for our continuous integration server VM (mysql not postgres)

Testing packages

env <- c("POSTGRES_PASS" =)

db <- docker$containers$run("postgres"”, ports "2222:5432",
rm = TRUE, detach TRUE,
env = env)

Testing packages

env <- c("POSTGRES_PASS" =)
db <- docker$containers$run("postgres"”, ports "2222:5432",
rm = TRUE, detach TRUE,

env = env)
con <- dbConnect(Postgres(), host = "localhost", port = 2222,

user = "postgres", password =)
dbWriteTable(con, "table", mydata)

Testing packages

env <- c("POSTGRES_PASS" =)
db <- docker$containers$run("postgres"”, ports "2222:5432",
rm = TRUE, detach TRUE,

env = env)
con <- dbConnect(Postgres(), host = "localhost", port = 2222,

user = "postgres", password =)

dbWriteTable(con, "table", mydata)
dbGetQuery(con, "SELECT * FROM table LIMIT 20")

Testing packages

env <- c("POSTGRES_PASS" =)
db <- docker$containers$run("postgres"”, ports "2222:5432",
rm = TRUE, detach TRUE,

env = env)
con <- dbConnect(Postgres(), host = "localhost", port = 2222,

user = "postgres", password =)
dbWriteTable(con, "table", mydata)
dbGetQuery(con, "SELECT * FROM table LIMIT 20")

db$stop()

But it's not limited to that - you could control a load balancing AWS cluster using docker swarm for your massively parallel ML pipeline perhaps

Encryption

Differential equations

3 packages that do completely different things

Encryption

C yph Y github.com/ropensci/cyphr

Differential equations

odin github.com/mrc-ide/odin

Docker

st e\ledore github.com/richfitz/stevedore

All 3 are available only through github at the moment, but will eventually make it to CRAN once they settle down
The common thread is that all exploit R's dynamic language to generate interfaces that narrow the gap between what the user wants to do and what it would take to do it
You don't have to use metaprogramming to do any of these things necessarily - but it's a useful and unusual trick

Just remember it's a bit like marmite!

http://github.com/mrc-ide/odin

R’s weirdnesses

are fun & useful

Hopefully that I've convinced you that R's weirdnesses are fun and useful and perhaps made you think about a package or an area that you'd not thought about before

1. R has some strange features that make it surprisingly powerful. These should be used with care
2. Three packages that do interesting things, using metaprogramming to build nice interfaces
3. Three fields that you may not have encountered with R

